

evolvevs

Technical summary

Evolve VS Vertical Sliding Sash Windows

with the benefits of modern day technology

Evolve VS windows are manufactured to maintain the elegant proportions of traditional sash windows, whilst incorporating the very best of modern day technology. Evolve VS windows enable your customers to enjoy the low maintenance and high security of PVCu without the problems associated with timber sash windows.

Evolve VS windows feature tilting upper and lower sashes for ease of cleaning, low line beads and gaskets for improved sight lines, energy efficient glass to reduce heating bills and above all they are quality assured for your customers' peace of mind.

From a terraced house to a stately home, Evolve vertical sliding sash windows ensure that every property retains its character and charm. Synseal offer a wide range of styles, colours and hardware options, whilst providing the benefits of modern day technology.

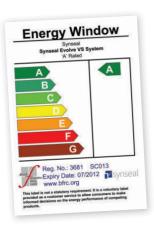
Many buildings have been disfigured by inappropriate window replacements that have ruined the character of the property. Our windows enable you to install new windows that blend into their surroundings. Sculptured Astragal bars, sash horns, two sliding sashes and a choice of hardware all add to the traditional feel of these beautiful windows. Vertical sliding sash windows from Synseal are guaranteed for 10 years as they are manufactured with the highest quality materials under the strictest quality controls.

Safe and secure with a beautiful finish

Evolve vertical sliding sash windows are fully reinforced with aluminium and sliding sashes are fully reinforced with galvanised steel. This is to not only prevent deflection in windy weather, but also to strengthen the sashes so that they are capable of carrying the weight of the glass and provide a strong secure fixing for handles, latches and other components.

The high quality balances maintain the equilibrium of the sash window at any point of travel and robust locking devices ensure homes are secure. All of this gives you improved strength, greater safety and comfort in the knowledge that the windows that you have purchased are built to last.

evolvevs


The Evolve vertical sliding sash window from Synseal comes with many advanced features:

- A WER as standard with optional upgrades
- · Low maintenance PVCu profiles with traditional styling
- · Fully featured sculptured profiles
- Equal sight lines for top and bottom sashes
- · Easy clean tilt facility
- 24mm glazing as standard for enhanced weather performance
- · Choices of sill sizes available

- Guaranteed for 10 years
- · Georgian or Astragal bar finish available
- Decorative sash horns (optional)
- Run through sash horns (optional)
- · Anti-jemmy bar (optional)
- Child/travel restrictors (optional)
- Deep bottom rail for a period look (optional)
- · Sill jointers for professional detailing

Energy efficient and environmentally friendly

Today window designers have more challenges. Not only do they need to design windows to keep out the wind and rain and let the sun in, but they have to consider the environmental options.

Our windows are not only lead free, but they have a A energy rating as standard, with low E double glazed glass units to keep the heat in and reduce heating bills. The windows also have brush seals around the openings for exceptional draught proofing.

Choosing PVCu over timber is the environmentally friendly choice. The majority of end of life PVCu windows can be recycled over and over again to produce new windows.

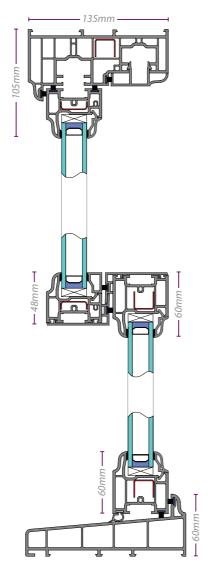
Sizes available

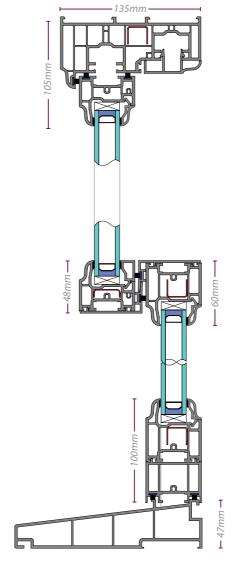
Our vertical sliding sash windows are available between the following sizes:

- Minimum sizes 350mm width x 800mm height.
- Maximum sizes 1500mm width x 2500mm height.

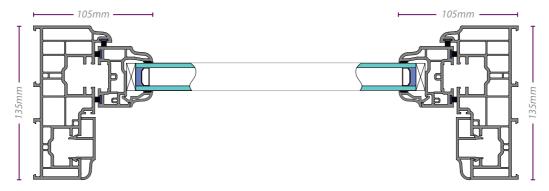
Delivered in just 7 working days!

We've invested heavily in setting up efficient and streamlined manufacturing for our Evolve VS windows - meaning we can guarantee delivery within 7 working days.


This quick turnaround is available across the whole range of nine colours enabling you to react quickly to your customers demands.



Schematics


Technical drawings below showing cross sections of the Evolve VS window.

Vertical section through sash with standard sill

Vertical section through sash with DBR and non standard sill option

Horizontal section through top sash

Choose a window to suit your project

Every window we manufacture is made to order. Every home and personal taste is different so we can offer you a wide range of styles, colours and hardware so your window will suit the property they are to be installed in perfectly.

Solid colours

Evolve VS windows are available in the following PVC-U profile colour:

White

Woodgrain colours

Foiled finishes are also available to enhance Evolve VS windows with glossy, freshly-painted colour woodgrain or authentic woodgrain effects:

Golden Oak

Golden Oak on White

Cherrywood on White

Artisan woodgrain collection

Evolve VS windows are available in the following Artisan colours and can be specified with White PVC-U on inside faces and woodgrain foiled finish on outside faces, see below:

The colours shown are designed as a guide only, before making your final decision, please ensure you have seen a foil swatch.

High quality balance weights and hardware are fixed to integral reinforcements for reliable and smooth opening time after time. Hardware is available in white, gold, chrome and satin chrome: **Pole eye - White** **Lock - Satin Chrome** **Tilt knob - Gold** **Sash lift - Chrome**

Bars

Hardware

To achieve a traditional look without the need for individual units of glass, our vertical sliding sash windows offer a choice of internal/external Georgian glazing bars.

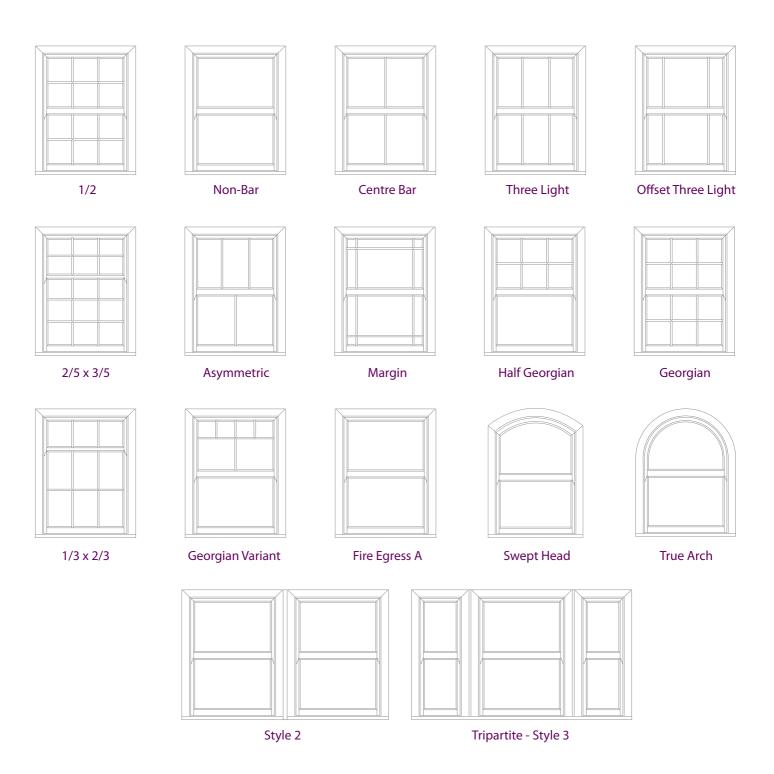
Run through sash horns

Child/travel restrictors

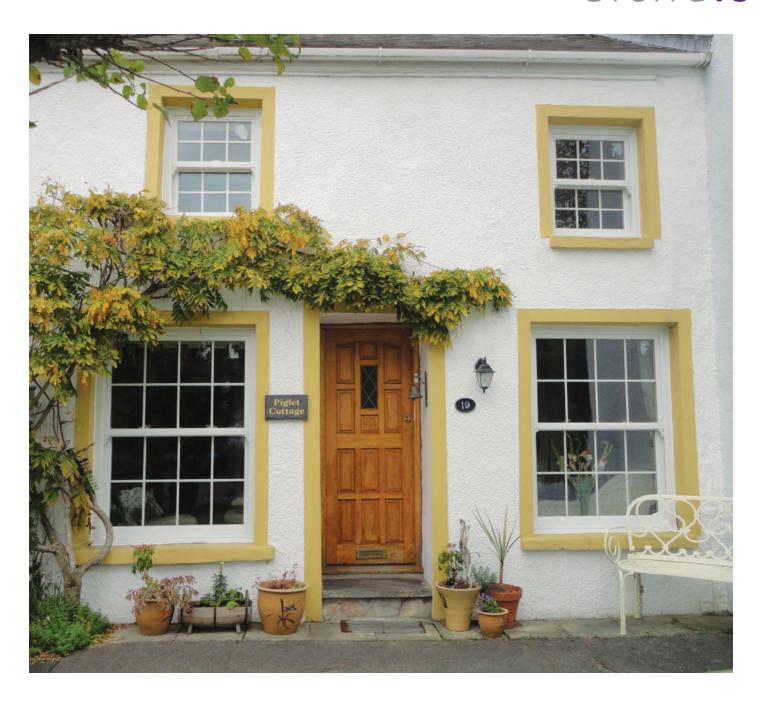
Astragal bars

18mm or 25mm Georgian bars

The colours shown are designed as a guide only. Before making your final decision, please ensure you have seen a foil swatch.


^{*}Extended lead time applicable on some Artisan colours, contact us for details.

Shape options:


The Evolve VS is available in a wide variety of styles to suit every property. Here are some styles you can order:

We also offer 90° and variable angle bay posts. Email **vsquotations@synseal.com** for further information.

evolvevs

Both sashes slide up and down, great for cleaning access and ventilation

Synseal Extrusions Limited. Common Road, Huthwiate, Nottinghamshire, England. NG17 6AD

EC DECLARATION OF PERFORMANCE

This document declares that the product:

Vertical Sliding PVC-U window.

For domestic and commercial buildings, conforming to the product requirements of BS EN 14351-1:2006+A1:2010 Annex ZA

Essential Characteristics	Performance	Test Standards	Notified Body No. of Test Laboratory	Test Report Reference and Issue Date
Watertightness	NPD	BS EN 1027	N/A	N/A
Dangerous substances	NONE	BS EN 14351-1: 2006+A1:2010	N/A	Safety Data Sheet
Resistance to wind load	NPD	BS EN 12211	N/A	N/A
Load-bearing capacity of safety devices	PASSED	BS EN 14609,BS EN 948 & BS EN14351 + A1:2010	Build Check (No.1806)	W13003-1 8 th January 2013
Acoustic performance	NPD	BS EN ISO 140-3	N/A	N/A
Thermal transmittance	1.8W/(m²•K)	EN ISO 10077-1 & EN ISO 10077-2 (or EN ISO 12567-1 and EN 12567-2)	Build Check (No.1806)	Report No. CU 13059-2 7 th March 2013
Radiation properties	NPD	EN 410	N/A	N/A
Air permeability	NPD	BS EN 1026	N/A	N/A

Initial type testing has been carried out by the following notified body:

Build Check Limited. Montrose House, Lancaster Road, Cressex Business Park, High Wycombe, Buckinghamshire. HP12 3PY. (No. 1806). www.buildcheck.co.uk

Signed on behalf of Synseal Extrusions Limited:

Name: S. Musgrave
Position: Manufacturing Director

Signature:

Synseal Extrusions Limited
Common Road
Huthwaite
Nottinghamshire
England
NG17 6AD

Date of Manufacture 2013

BS EN14351-1:2006 + A1:2010 Annex ZA
Vertical Sliding PVC-U Window Intended to be used in
Domestic and Commercial Buildings.

Dangerous substances – None Load bearing capacity of safety devices – Passed Thermal Performance – 1.8 W/(m² • K)

Synseal Extrusions Limited. Common Road, Huthwiate, Nottinghamshire, England. NG17 6AD

EC DECLARATION OF PERFORMANCE

This document declares that the product:

Vertical Sliding PVC-U window.

For domestic and commercial buildings, conforming to the product requirements of BS EN 14351-1:2006+A1:2010 Annex ZA

Essential Characteristics	Performance	Performance Test Standards No L		Test Report Reference and Issue Date
Watertightness	NPD	BS EN 1027	N/A	N/A
Dangerous substances	NONE	BS EN 14351-1: 2006+A1:2010	N/A	Safety Data Sheet
Resistance to wind load	NPD	BS EN 12211	N/A	N/A
Load-bearing capacity of safety devices	PASSED	BS EN 14609,BS EN 948 & BS EN14351 + A1:2010	Build Check (No.1806)	W13003-1 8 th January 2013
Acoustic performance	NPD	BS EN ISO 140-3	N/A	N/A
Thermal transmittance	1.6W/(m²•K)	EN ISO 10077-1 & EN ISO 10077-2 (or EN ISO 12567-1 and EN 12567-2)	Build Check (No.1806)	Report No. CU 13059-2 7 th March 2013
Radiation properties	NPD	EN 410	N/A	N/A
Air permeability	NPD	BS EN 1026	N/A	N/A

Initial type testing has been carried out by the following notified body:

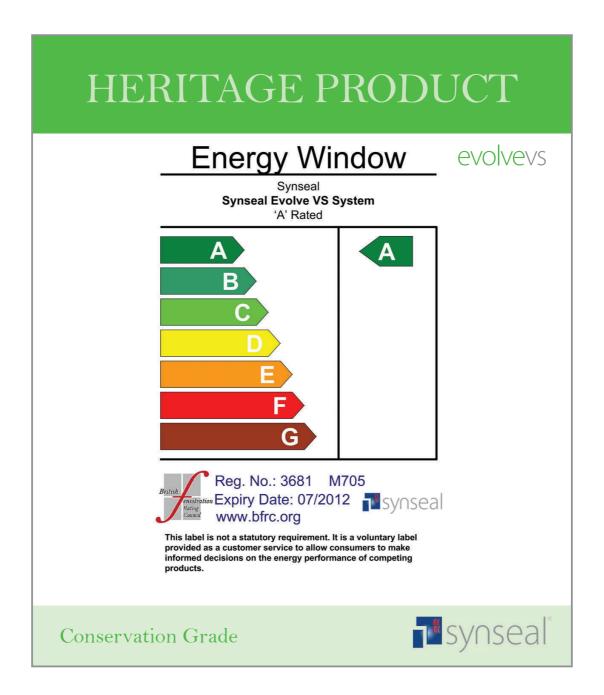
Build Check Limited. Montrose House, Lancaster Road, Cressex Business Park, High Wycombe, Buckinghamshire. HP12 3PY. (No. 1806). www.buildcheck.co.uk

Signed on behalf of Synseal Extrusions Limited:

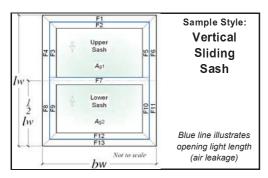
Name: S. Musgrave
Position: Manufacturing Director

Signature:

Synseal Extrusions Limited
Common Road
Huthwaite
Nottinghamshire
England
NG17 6AD


Date of Manufacture 2013

BS EN14351-1:2006 + A1:2010 Annex ZA
Vertical Sliding PVC-U Window Intended to be used in
Domestic and Commercial Buildings.


Dangerous substances – None Load bearing capacity of safety devices – Passed Thermal Performance – 1.6 W/(m² • K)

Report Number: Report Date:

Project Details:

SYN-00062-1-Rev1 VS 18 August 2010

Report Issue No.11 (03/03/09)

1480

1230

mm

mm

Evolve VS 4/16/4 Diamant / Argon 90% / Planitherm Total+, Swisspacer V with PU (0.4) to 10mm SL, full RS+RA

Input Values:

Total window height 0DP

Total window width ODP

Yellow input, green intermediary, blue finals

X' DP is no.of decimal place to enter

Nominal 4mm etc to 0DP, others 1DP					
Upper Panel Glazing dim's and properties:					
Thickness of pane 1	4	mm			
Pane 1/2 distance	16 mm				
Gas fill (1/2)	Argon 90%				
Thickness of pane 2	4	mm			
Complete next 3 cells for TG IGU					
Pane 2/3 distance		mm			

16	mm				
Argon 90%					
4	mm				
Complete next 3 cells for TG IGU					
mm					
mm					
1.194	W/(m²·K)				
0.74					
	Argor 4				

Thermal transmittance of window from hot box test						
U_{w-2DP}		W/(m²·K)				
•						

Window Dime	nsions:		Ar	ea
	Length	Width	No gasket	With gasket
Section	(m)	(m)	(m ²)	(m ²)
Upper glazing	0.6038	1.0200	0.6158	0.6158
Lower glazing	0.6078	1.0200	0.6199	0.6199
	Tota	al of glazing	1.2357	1.2357
Frame	(m)	(m)	(m ²)	(m ²)
F1	1.2300	0.0690	0.0824	0.0824
F2	1.1580	0.0360	0.0392	0.0392
F3	0.6710	0.0690	0.0440	0.0440
F4	0.7400	0.0360	0.0254	0.0254
F5	0.6710	0.0690	0.0440	0.0440
F6	0.7400	0.0360	0.0254	0.0254
F7	1.1580	0.0625	0.0679	0.0679
F8	0.7400	0.0420	0.0298	0.0298
F9	0.6800	0.0630	0.0406	0.0406
F10	0.6800	0.0630	0.0406	0.0406
F11	0.7400	0.0420	0.0298	0.0298
F12	1.1460	0.0410	0.0444	0.0444
F13	1.2300	0.0600	0.0713	0.0713
	0.5847	0.5847		
	Total V	Vindow, Aw	1.8204	1.8204
Perce	ntage uppe	r glass area	33.83%	33.83%
Perce	entage lower	r glass area	34.05%	34.05%
Perce	ntage glass	area (total)	67.88%	67.88%

g_w 0.	15
	rJ
U _{window} U _w 1.43 W/(n	¹²·K)

Frame dimensions:		Without gasket	Gasket protrusion	With gasket	
	(b _f)	(mm)	(mm)	(mm)	Total
All frame values to nearest	F1 fixed top rail	69	n/a	69	105
0.5mm, gaskets to 1DP	F2 moving top rail	36	0.0	36	105
F3 top (LH) jamb (r	69	0.0	69	105	
F4 top (LH) jamb (36	n/a	36	105	
F5 top (RH) jamb (ı	69	0.0	69	105	
F6 top (RH) jamb (F6 top (RH) jamb (fixed frame)			36	103
F7 mid rail	(upper gasket)	62.5	0.0	62.5	62.5
F7 IIIIQ Iali	(lower gasket)	02.3	0.0		
F8 bottom (LH) jamb	(fixed frame)	42	n/a	42	105
F9 bottom (LH) jamb	(moving sash)	63	0.0	63	105
F10 bottom (RH) jaml	(moving sash)	63	0.0	63	105
F11 bottom (RH) jam	42	n/a	42	105	
F12 bottom mo	41	0.0	41	101	
F13 bottom fi	xed rail	60	n/a	60	101
	asket area	0	m ²		

Where a U_d value from hot box testing is available, no L_f^{2D} or L_{ψ}^{2D} values need to be entered									
Frame conductance:	All L values to 4DP. All b values to 0DP								
		W/(m·K)	b _p (mm)		W/(m·K)	b _g (mm)			
F1+F2 top rail	1	0.3703	190	1	0.4092	190			
F3+F4 top (LH) jamb	1	0.3864	190		0.4229	190			
F5+F6 top (RH) jamb	1	0.3864	190	1	0.4229	190			
F7 mid rail	L_f^{2D}	0.5727	380	L_{ψ}^{2D}	0.6530	380			
F8+F9 bottom (LH) jamb	1	0.3836	190	1	0.4229	190			
F10+F11 bottom (RH) jamb	1	0.3836	190	1	0.4229	190			
F12+F13 bottom rail	1	0.3689	190	1	0.4080	190			

Frame:	b _f (no gaskets)	U _f	Frame areas (no gaskets)	Heat flow	Ψ	I _g	Heat flow
Section	(m)	$(W/(m^2 \cdot K))$	(m²)	(W/K)	(W/(m·K))	(m)	(W/K)
F1+F2 top rail	0.1050	1.4120	0.1216	0.1717	0.0341	1.0200	0.0348
F3+F4 top left jamb	0.1050	1.5654	0.0694	0.1086	0.0317	0.6038	0.0191
F5+F6 top right jamb	0.1050	1.5654	0.0694	0.1086	0.0317	0.6038	0.0191
F7 mid rail	0.0625	2.0580	0.0679	0.1397	0.0707	1.0200	0.0721
F8+F9 btm left jamb	0.1050	1.5387	0.0704	0.1083	0.0345	0.6078	0.0210
F10+F11 btm right jamb	0.1050	1.5387	0.0704	0.1083	0.0345	0.6078	0.0210
F12+F13 bottom rail	0.1010	1.4541	0.1157	0.1682	0.0343	1.0200	0.0350
		Totals	0.5847	0.9134		Total	0.2219

	Air Leakage loss:						
Air leakage at 50 Pa per hour & per unit length of opening light (BS 6375-1) - 2L							
	Opening light length	6.1640	m	Total air leakage			

m³/(m²·h)

0.88

Other parameters needed for calculation, taken from simulations:			λρ =	0.035	W/(m·K)	R _{se} =	0.04	m ² ·K /W	R _{se} =	0.13	m ² ·K /W
Upper glazing:	Panel thickness, $d_p = d_g =$	0.024 r	m $R_p =$	0.6857	m ² ·K /W	R _{tot} =	0.8557	m ² ·K/ W	U_p =	1.1686	W/(m²·K)

BFRC Rating	Label	EWER	Window
kWh/(m²·yr)	index	Rating Scale	Rating
≥ 0			
-10 to <0		В	
-20 to <-10		С	
-30 to <-20	0	D	Α
-50 to <-30		Е	
-70 to <-50		F	
<-70		G	

BFRC Rating =	
218.6g _{window} - 68.5 x (U _{window} + Effective L ₅₀) =	-0.27
Climate zone is:	UK

Thermal transmittance, W/(m²·K)	U window	1.4
Solar factor	g window	0.45
Window air leakage heat loss, W/(m²·K)	L_{factor}	0.01

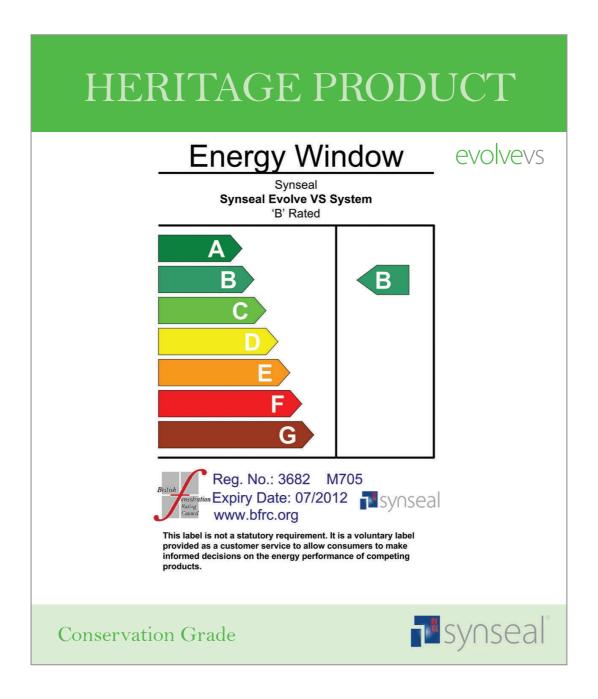
Greg Tabberer Simulator Name:

0.26

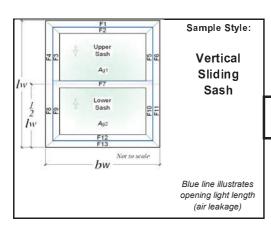
1.603

0.01

Heat loss = 0.0165 L₅₀


m³/(m·h)

W/(m²·K)


m³/h

Simulator 080

Length, I

m

0.6038

0.6078

m

1.2300

1.1040

0.6770

0.7400

0.6770

0.7400

1.1040

0.7400

0.6800

0.6800

0.7400

1.1040

1.2300

Percentage lower glass area Percentage glass area (total)

Upper glazing

Lower glazing

Frame

F2

F3

F4

F5

F6

F7

F8

F9

F10

F11

F12

F13

Solar Factor, g -

value:

Width, b

1.0200

1.0200

m

0.0630

0.0420

0.0420

0.0630

0.0420

0.0630

0.0625

0.0630

0.0420

0.0630

0.0410

0.0600

Total Frame

Total Window, Aw Percentage upper glass area

Total of glazing

No

gasket

m²

0.6158

0.6199

1.2357

m

0.0735

0.0446

0.0269

0.0446

0.0446

0.0664

0.0447

0.0270

0.0447

0.0435

0.0700

0.5847

1.8204

33.83%

34.05%

glazing area A_g (m²

With

gasket

0.6158

0.6199

1.2357

m

0.0735

0.0446

0.0269

0.0446

0.0446

0.0664

0.0447

0.0270

0.0270

0.0447

0.0435

0.0700

0.5847

1.8204

33.83%

34.05%

1.2392

0.9

SYN-00062-19 Report Number:

18/11/2011 Report Date:

Project Details:

Evolve VS 4/16/4 Float / Argon 90% / Total+/ TX-N (PS), full RS+RA

THIS SPREADSHEET IS THE PROPERTY OF THE BFRC AND CAN ONLY BE USED IN CONJUNCTION WITH A BFRC LICENCE APPLICATION

Input Values:

Yellow input, green intermediary, blue finals

X' DP is no.of decimal place to enter

Report Issue No.14

(15/07/11)

Parameter	Symbol	Units
Total window height 0DP	l _w 1480	mm
Total window width ODP	b _w 1230	mm

Nominal 4mm etc to 0DP, others 1DP Glazing dimensions and properties:				Frame dimensions (All frame values to nearest 0.5mm,		Frame height, b _f (mm)			Gasket protrusion	With gasket	Total
Thickness of pane 1, d _{p1}	4.0	mm	1	gaskets to	Combo	Internal	External	(mm)	(mm)		
Glazing fill thickness 1/2, d _{gf1}	16.0	mm	1 [F1 fixed to	p rail	105.0	63.0	36.0	n/a	63.0	105.0
Gas fill (1/2)	Arg	on 90%	lſ	F2 moving	top rail	105.0	42.0	69.0	0.0	42.0	105.0
Thickness of pane 2, d _{p2}	4.0	mm	lſ	F3 top (LH) jamb (moving sash)	105.0	42.0	69.0	0.0	42.0	105.0
Complete next 3 cells for TG IGU			lſ	F4 top (LH) jamb	(fixed frame)	105.0	63.0	36.0	n/a	63.0	105.0
Glazing fill thickness 2/2, d _{gf2}		mm	lſ	F5 top (RH) jamb (moving sash)		105.0	42.0	69.0	0.0	42.0	105.0
Gas fill (2/3)			lſ	F6 top (RH) jamb	(fixed frame)	105.0	63.0	36.0	n/a	63.0	105.0
Thickness of pane 3, d _{p3}		mm] [F7 mid rail (upper)			62.5		0.0	62.5	62.5
Glazing Trans 3DP U_g	1.197	W/(m²·K)	Ш	r/ Illiu Iali	(lower)		02.5	02.5	0.0	02.5	02.5
g-value - 2DP g	0.71		lſ	F8 bottom (LH) jam	b (fixed frame)	105.0	63.0	36.0	n/a	63.0	105.0
				F9 bottom (LH) jamb (moving sash)		105.0	42.0	69.0	0.0	42.0	105.0
Thermal transmittance of window from h	ot box test] [F10 bottom (RH) jam	b (moving sash)	105.0	42.0	69.0	0.0	42.0	105.0
U w - 2DP		W/(m²·K)	lſ	F11 bottom (RH) jan	nb (fixed frame)	105.0	63.0	36.0	n/a	63.0	105.0
				F12 bottom m	oving rail		41.0		0.0	41.0	101.0
Window Dimensions:	Ar	ea, A	Ιſ	F13 bottom f	ixed rail	1	60.0		n/a	60.0	101.0

Where a Uw value from hot box testing is available, no L_f^{2D} or L_{ψ}^{2D} values need to be entered							
Frame conductance:	All L values to 4DP. All b values to 0DP						
		W/(m·K)	b _p (mm)		W/(m·K)	b _g (mm)	
F1+F2 top rail		0.3578	190		0.4101	190	
F3+F4 top (LH) jamb		0.3672	190		0.4198	190	
F5+F6 top (RH) jamb		0.3672	190		0.4198	190	
F7 mid rail	L_f^{2D}	0.5727	380	$L \psi^{ m 2D}$	0.6763	380	
F8+F9 bottom (LH) jamb	7	0.3787	190	1	0.4317	190	
F10+F11 bottom (RH) jamb	7	0.3787	190	1	0.4317	190	
F12+F13 bottom rail	Ī	0.3689	190	1	0.4215	190	

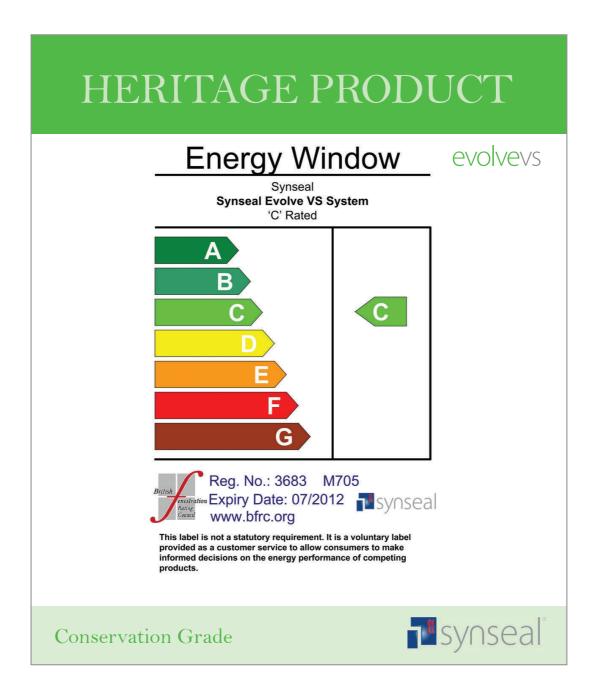
Total gasket area

Frame:	b _f	Uf	A _f (no gasket)	Frame heat, HU	Ψ	I _g	Junction heat,Ηψ
Section	m	W/(m²-K)	m²	W/K	W/(m·K)	m	W/K
F1+F2 top rail	0.1050	1.2930	0.1181	0.1527	0.0469	1.0200	0.0478
F3+F4 top left jamb	0.1050	1.3825	0.0715	0.0989	0.0472	0.6038	0.0285
F5+F6 top right jamb	0.1050	1.3825	0.0715	0.0989	0.0472	0.6038	0.0285
F7 mid rail	0.0625	2.0580	0.0664	0.1366	0.0928	1.0200	0.0947
F8+F9 btm left jamb	0.1050	1.4920	0.0718	0.1071	0.0476	0.6078	0.0289
F10+F11 btm right jamb	0.1050	1.4920	0.0718	0.1071	0.0476	0.6078	0.0289
F12+F13 bottom rail	0.1010	1.4541	0.1136	0.1651	0.0472	1.0200	0.0482
		Totals	0.5847	0.8664		Total	0.3055
Air Leakage loss:							
Air leakage at 50 Pa per hou	r & per unit l	ength of ope	ening light (E	3S 6375-1) -	2DP	0.26	m³/(m·h)
Opening light length, lopening	6.0340	m		otal air leaka	age	1.569	m³/h
		3 2					

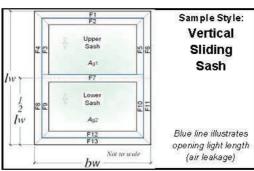
			Opening light len	gth, I _{opening}	6.0340	m	T	otal air leaka	age	1.569	m ³ /h
U _{window}	U _w 1.46	W/(m²·K)		L ₅₀	0.86	m ³ /(m ² ·h)	H	leat loss =	0.0165 L ₅₀	0.01	W/(m ² ·K)
	eeded for calculation, taken from Panel thickness, $d_p = d_q =$		$\lambda_p = R_p = R_p$	0.035 0.6857	W/(m·K) m²·K /W	$R_{se} = R_{tot} = R_{tot}$	0.04 0.8557	m ² ·K /W m ² ·K/ W	R _{se} = U _p =	0.13 1.1686	m ² ·K /W W/(m ² ·K)

BFRC Rating	Label	EWER	Window
kWh/(m²·yr)	index	Rating Scale	Rating
≥ 0		Α	
-10 to <0		<i>⇒</i> B <i>⇔</i>	
-20 to <-10		С	
-30 to <-20	-7	D	В
-50 to <-30		Е	
-70 to <-50		F	
<-70		G	

BFRC Rating =		
218.6 <i>g</i> _{window} - 68.5 x (<i>U</i> _{window} + Effective	L ₅₀) =	-6.70
Climate zone is:		UK
Thermal transmittance, W/(m²·K)	U window	1.5
Solar factor	α	0.43


	1.5
g window	0.43
L _{factor}	0.01

Greg Tabberer Simulator Name:



Simulator 080

Thick

Pane 1/2 distance

Thickness of pane 2

Gas fill (1/2)

Complete next 3 cells for TG IGU

0.6710

0.7400

1.1580

0.7400

0.6800

0.6800

0.7400

1.1460

1.2300

0.0690

0.0360

0.0625

0.0420

0.0630

0.0630

0.0420

0.0410

0.0600

Total Frame

Total Window, Aw

0.0440

0.0254

0.0679

0.0298

0.0406

0.0406

0.0298

0.0444

0.0713

0.5847

1.8204

F5

F6

F7

F8

F9

F10

F11

F12

F13

Report Number: Report Date: Project Details:

SYN-00062-3-Rev1 VS

Report Issue No.11 (03/03/09)

mm mm

18 August 2010

Evolve VS 4/16/4 Float / Argon 90% / Planitherm Total+, Aluminium spacer, PU (0.4) to 10mm SL, full RS + RA

Input Values:

mm

mm

0.0440

0.0254

0.0679

0.0298

0.0406

0.0406

0.0298

0.0444

0.0713

0.5847

1.8204

Argon 90%

Yellow input, green intermediary, blue finals

X' DP is no of decimal place to enter

1480

bw	(air leakage)	Total window width <i>ODP</i>		Ьw		
Nominal 4mm etc to 0DP , other	s 1DP	Frame dimensions:		Without	Gasket	With
Upper Panel Glazing dim's	and properties:	7 I		gasket	protrusion	gaske
Thickness of pane 1	4 mm	7	(b ₄)	(mm)	(mm)	(mm)

Total window height **0DP**

Frame dimensions:		Without gasket	Gasket protrusion	With gasket	
	(b _f)	(mm)	(mm)	(mm)	Total
All frame values to nearest	F1 fixed top rail	69	n/a	69	105
0.5mm, gaskets to 1DP	F2 moving top rail	36	0.0	36	105
F3 top (LH) jamb (m	oving sash)	69	0.0	69	405
F4 top (LH) jamb (fi	36	n/a	36	105	
F5 top (RH) jamb (m	69	0.0	69	405	
F6 top (RH) jamb (f	36	n/a	36	105	
F7 mid rail	(upper gasket)	62.5	0.0	62.5	62.5
F7 MIG rail	(lower gasket)		0.0		
F8 bottom (LH) jamb	(fixed frame)	42	n/a	42	4:05
F9 bottom (LH) jamb (63	0.0	63	105	
F10 bottom (RH) jamb	(moving sash)	63	0.0	63	405
F11 bottom (RH) jamb	42	n/a	42	105	
F12 bottom mov	41	0.0	41	101	
F13 bottom fix	60	n/a	60	101	
	Tota	l gasket area	0	m ²	

Pane 2/3 distance			mm	F5 top (RH) jamb (moving sash)		69	0.0	69	105		
Gas fill (2/3)				F6 top (RH) jamb (fixed frame)			36	n/a	36	103	
Thickness of pan	e 3			mm	F7 mid rail	(upper ga	sket)	62.5	0.0	62.5	62.5
Glazing Trans 30P		1.197 W/(m²·K)		F7 mid raii	(lower ga	sket)	02.5	0.0	02.5	02.5	
g-value - 20P gı 0.71		0.71		F8 bottom (LH) jamb (fixed frame)		42	n/a	42	105		
30,8 34			F9 bottom (LH) jamb (moving sash)			63	0.0	63	100		
Thermal transmitt	tance of win	dow from ho	t box test		F10 bottom (RH) jamb (moving sash)		63	0.0	63	105
		U _{w-2DP}		W/(m²·K)	F11 bottom (RH) jamb	bottom (RH) jamb (fixed frame)			n/a	42	105
		1-011-X19002-X18			F12 bottom moving rail F13 bottom fixed rail		41	0.0	41	101	
Window Dime	nsions:	7,0	Α	rea			60	n/a	60	101	
	Length	Width	No gasket	VVith gasket	Sec	gasket area	0	m ²			
Section	(m)	(m)	(m ²)	(m ²)	Where a U_d value from hot b	Where a U_d value from hot box testing is available, no			values nee	d to be ente	re d
Upper glazing	0.6038	1.0200	0.6158	0.6158	Frame conductance:		All L va	ues to 4DP	. All b value	s to ODP	T T
Lower glazing	0.6078	1.0200	0.6199	0.6199	4		W/(m·K)	b _p (mm)		W/(m·K)	b _g (mm)
	Tota	al of glazing	1.2357	1.2357	F1 +F2 top rail		0.3703	190		0.4560	190
Frame	(m)	(m)	(m ²)	(m ²)	F3+F4 top (LH) jamb		0.3864	190		0.4729	190
F1	1.2300	0.0690	0.0824	0.0824	F5+F6 top (RH) jamb	- 0	0.3864	190	l i	0.4729	190
F2	1.1580	0.0360	0.0392	0.0392	F7 mid rail	L, ^{2D}	0.5727	380	Lψ ^{2D}	0.7363	380
F3	0.6710	0.0690	0.0440	0.0440	asy miditalis	L1	0.0121	200	Lψ	0.7363	200
F4	0.7400	0.0360	0.0254	0.0254	F8+F9 bottom (LH) jamb	o)	0.3836	190		0.4714	190

F8+F9 bottom (LH) j	amb	1	0.3836	190		0.4714	190
F10+F11 bottom (RH)	1 '	0.3836	190	1	0.4714	190	
F12+F13 bottom r		0.3689	190		0.4559	190	
Fram e:	b, (no gaskets)	U,	Frame areas (no gaskets)	Heat flow	Ψ	l _g	Heat flow
Section	(m)	(W/(m²·K))	(m²)	(WK)	(W/(m·K))	(m)	(WK)
F1+F2 top rail	0.1050	1.4120	0.1216	0.1717	0.0803	1.0200	0.0819
F3+F4 top left jamb	0.1050	1.5654	0.0694	0.1086	0.0811	0.6038	0.0490
F5+F6 top right jamb	0.1050	1.5654	0.0694	0.1086	0.0811	0.6038	0.0490
F7 mid rail	0.0625	2.0580	0.0679	0.1397	0.1528	1.0200	0.1559
F8+F9 btm left jamb	0.1050	1.5387	0.0704	0.1083	0.0824	0.6078	0.0501
F10+F11 btm right jamb	0.1050	1.5387	0.0704	0,1083	0.0824	0.6078	0.0501
F12+F13 bottom rail	0.1010	1.4541	0.1157	0.1682	0.0816	1.0200	0.0832
8		Totala	0.5047	0.0124		Total	0.5101

Percentage upper glass area	33.83%	33.83%	r7 mid fall	0.0625	2.0500	0.0079	0.1397	0.1526	1.0200	0.1559
Percentage lower glass area	34.05%	34.05%	F8+F9 btm left jamb	0.1050	1.5387	0.0704	0.1083	0.0824	0.6078	0.0501
Percentage glass area (total)	67.88%	67.88%	F10+F11 btm right jamb	0.1050	1.5387	0.0704	0,1083	0.0824	0.6078	0.0501
· ·			F12+F13 bottom rail	0.1010	1.4541	0.1157	0.1682	0.0816	1.0200	0.0832
			T.E.		Totals	0.5847	0.9134		Tota	0.5191
Solar Factor, g-value:	Solar Factor, g -value: F_w 0.9 Air Leakage loss:									
	9 w	0.43	Airleakage at 50 Pa perhou	ur & per unit	t length of op	ening light	(BS 6375-1)	- 2DP	0.26	m³/(m·h)
			Opening light length	6.1640	m	187	Total air leak:	age	1.603	m³/h
U_{window} U_{w}	1.60	W/(m²·K)	L ₅₀	0.88	m ³ /(m ² ·h)	ŀ	Heat loss =	0.0165 L ₅₀	0.01	W/(m²·K)
Other parameters needed for calculation,	taken from	simulations:	$\lambda_{\rho} = 0.035$	W/(m·K)	R _{se} =	0.04	m².K/W	R _{se} =	0.13	m²·K/W
Upper glazing: Panel thickness, <i>c</i>	$d_p = d_q =$	0.024 n	$R_p = 0.6857$	m ² .K /W	$R_{tot} =$	0.8557	m².K/W	$U_p =$	1.1686	W/(m²-K)

BFRC Rating =

BFRC Rating kWh/(m ² .yr)	Label index	EWER Rating Scale	Window Rating
≥ []		Α	
-10 to <0		В	
-20 to <-10 <₽	0.777.7986	□ C ←	Careto
-30 to <-20	-16	D	С
-50 to <-30	1,002,000,00	E	CHECK .
-70 to - 50		F	
<-70		G	

218.6 g_{window} - 68.5 χ (U_{window} + Effective L ₅₀) =				
Climate zone is:				
Thermal transmittance, W/(m²·K)	U window	1.6		
Solar factor	g window	0.43		
Window air leakage heat loss, WI(m²·K)	L _{factor}	0.01		

BFRC Certified Simulator Name: Greg Tabberer Simulator 080

British

enestration Rating Council

The Evolve Vertical Slider Window Specification

- Synseal White
- WER A as standard
- Fully featured system
- Fully reinforced sashes
- Fully concealed gaskets
- Internally beaded
- Two pole eye to top sash
- Cam locking locks (An additional non-locking cam lock if over 850mm wide)
- Two sash lifts to bottom sash
- Easy clean tilt facility to top and bottom sash
- Standard 154mm sill (unless overwise requested)
- White furniture as standard (Gold, Chrome and Satin Chrome also available)
- Run through or stuck on sash horn option available
- Optional travel/child restrictors
- Optional trickle vents
- Optional security rail

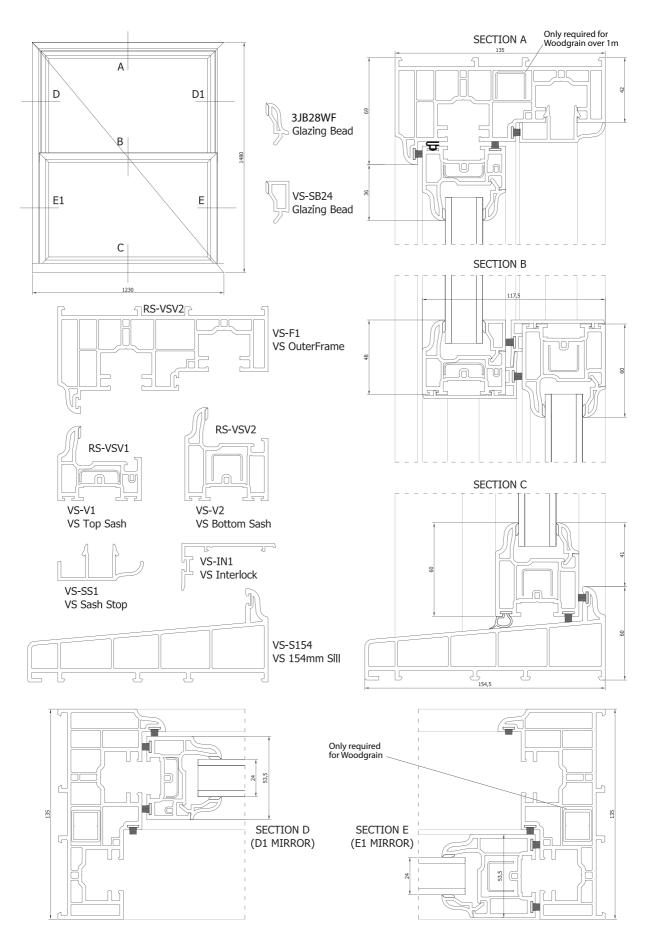
Our vertical slider comes with a 10 year guarantee on the profile and glass, a lifetime guarantee on the springs and a 1 year guarantee on the furniture (eg, locks, pole eyes, sash lifts and tilt knobs).

If you require any further information, please do not hesitate to contact myself.

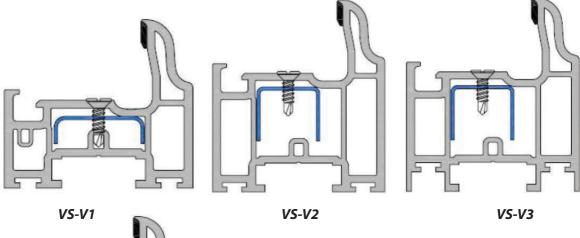
Assuring you of our best attention at all times.

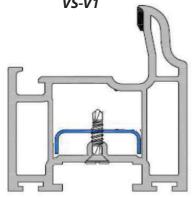

Yours Sincerely

Sarah Starkey

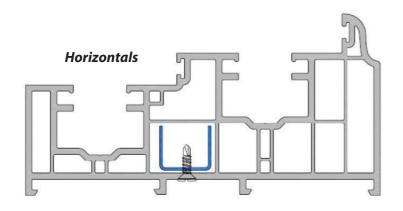

Vertical Slider Business Development Manager

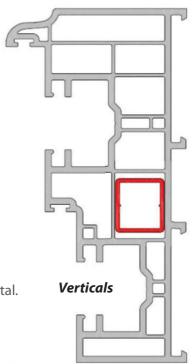
Vertical Slider Anatomy


Components

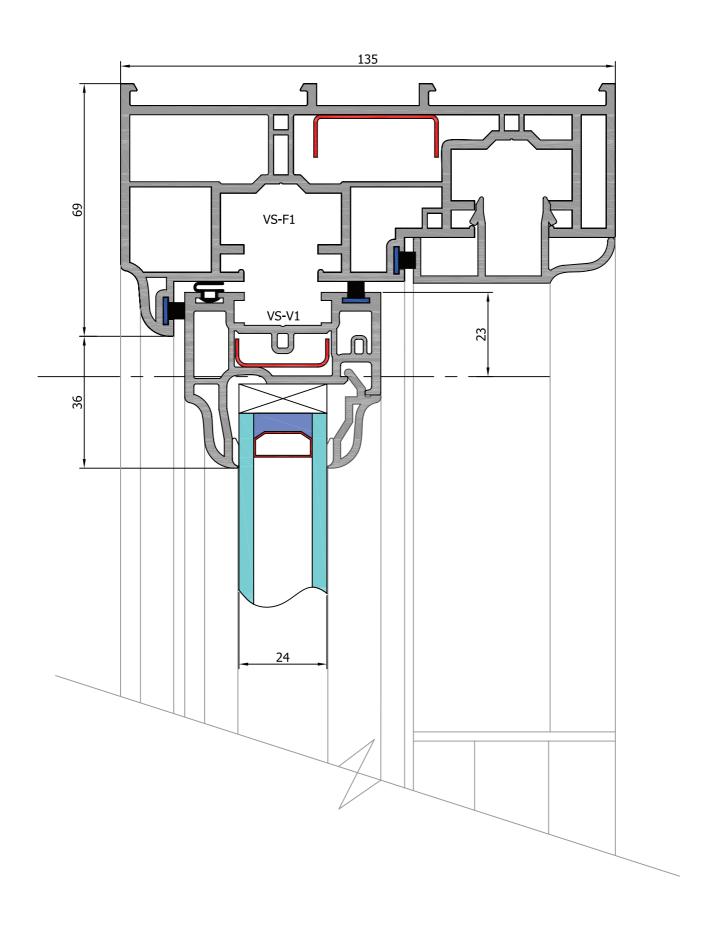


Reinforcing guidelines

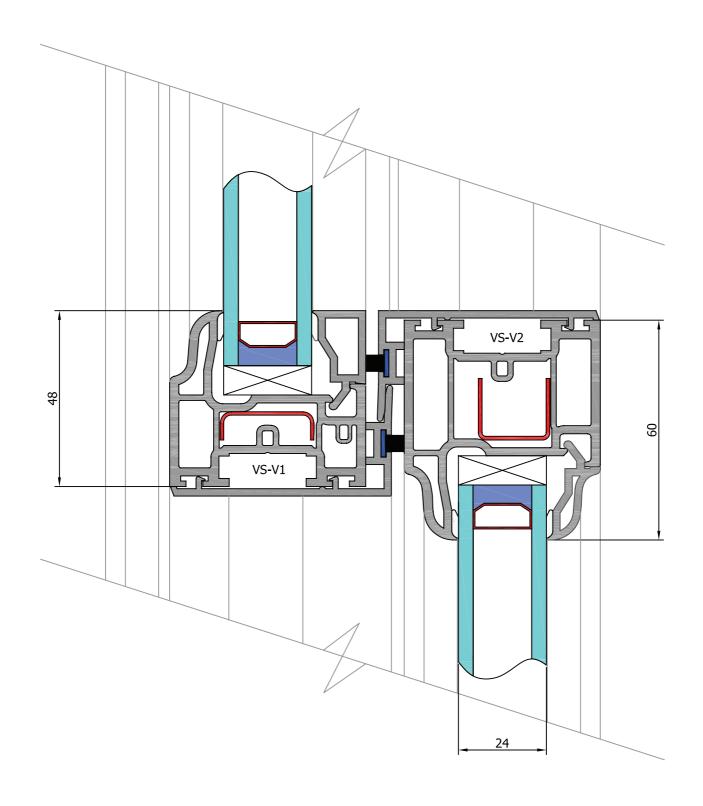

evolvevs


VS-V2 (trickle vent)

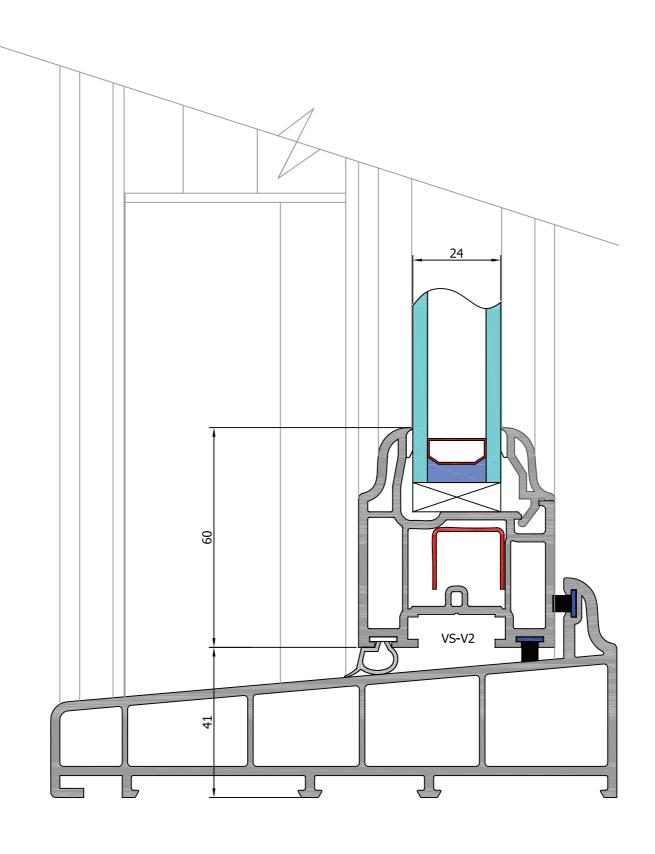
- · All sashes are fully reinforced
- Place the reinforcing into the chamber of the profiles as shown at equal distances from each end and fix the reinforcing with 3.9 x 16 countersunk screws (SH25) or 3.9 x 25 countersunk screw ((SH08) when fixing to trickle vent sash) at 150mm from each end with no more than 500 mm centres, on the inner of the profile.
- Ensure that the reinforcing does not enter the apertures for the travel restrictors.

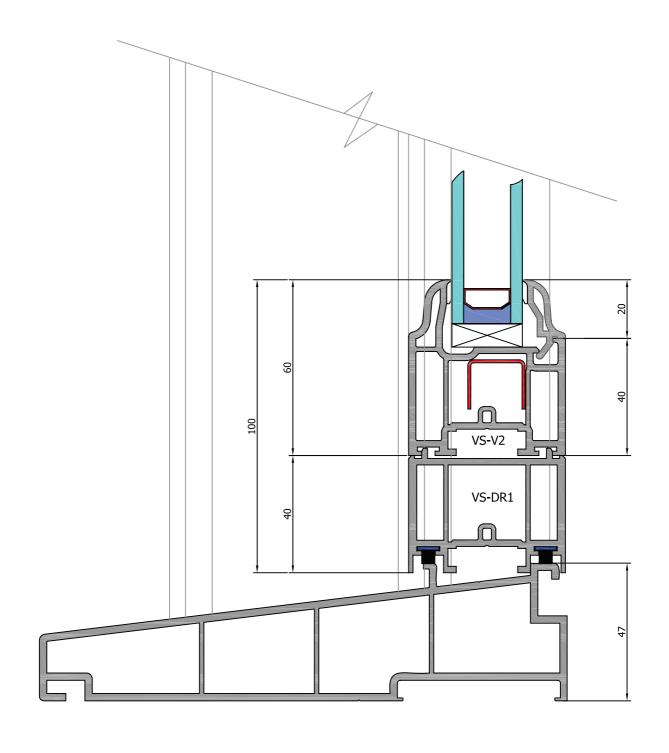

Frames are reinforced when:

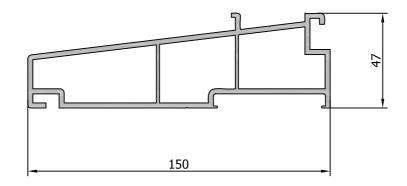
- Width is greater than 1000mm, with steel (VSRSV2) along the horizontal.
- Height is greater than 2500mm with aluminium (5RA-SO7) along the verticals or if the profile is foiled.

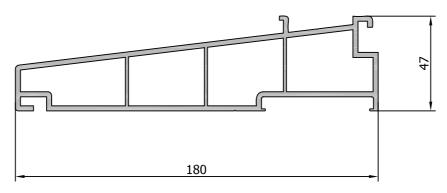


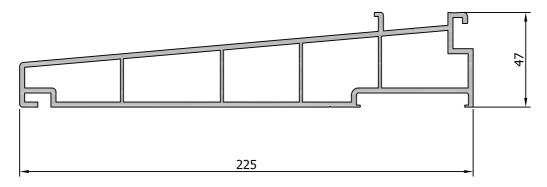
Frame and Top Sash Cross Section evolvevs



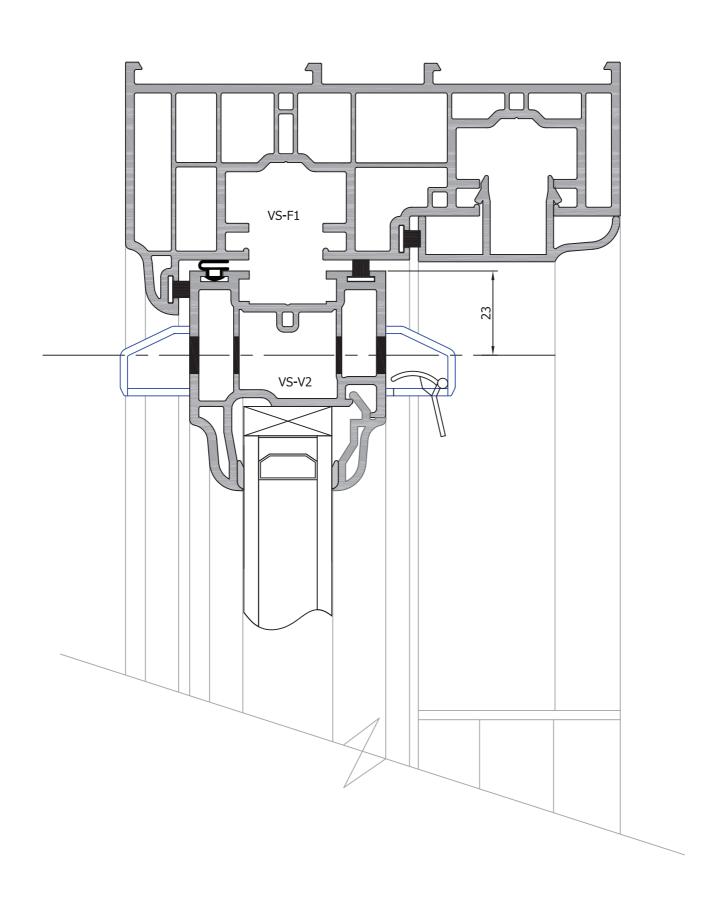




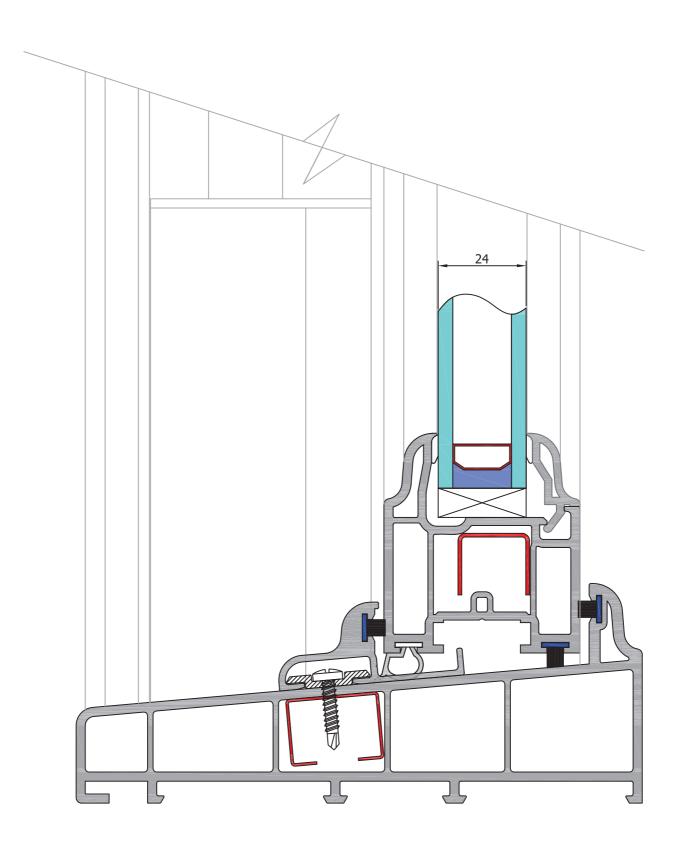

Non Standard Sill with DBR Cross Section

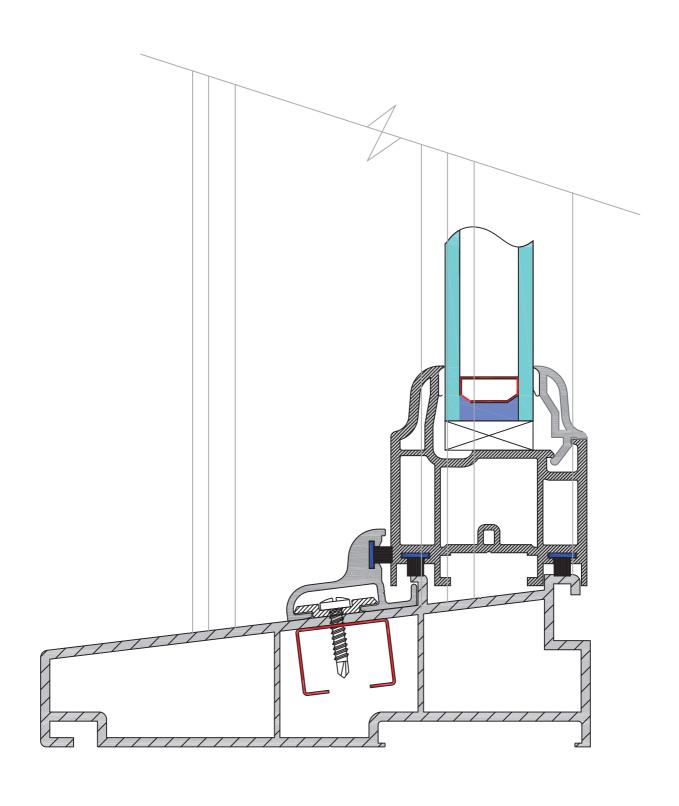


3S150 - 150mm Vertical Slider Sill

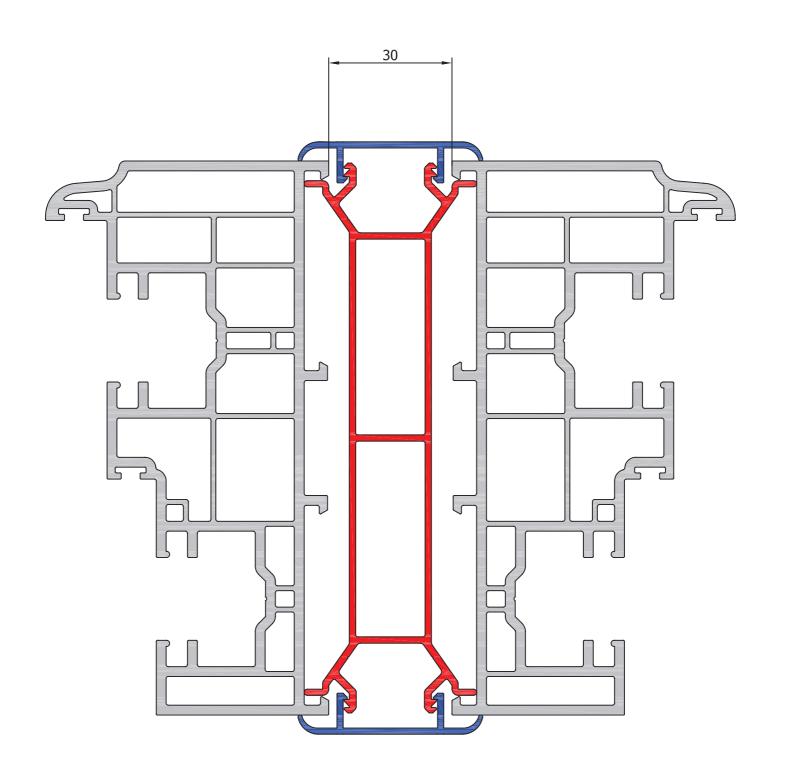


3S180 - 180mm Vertical Slider Sill

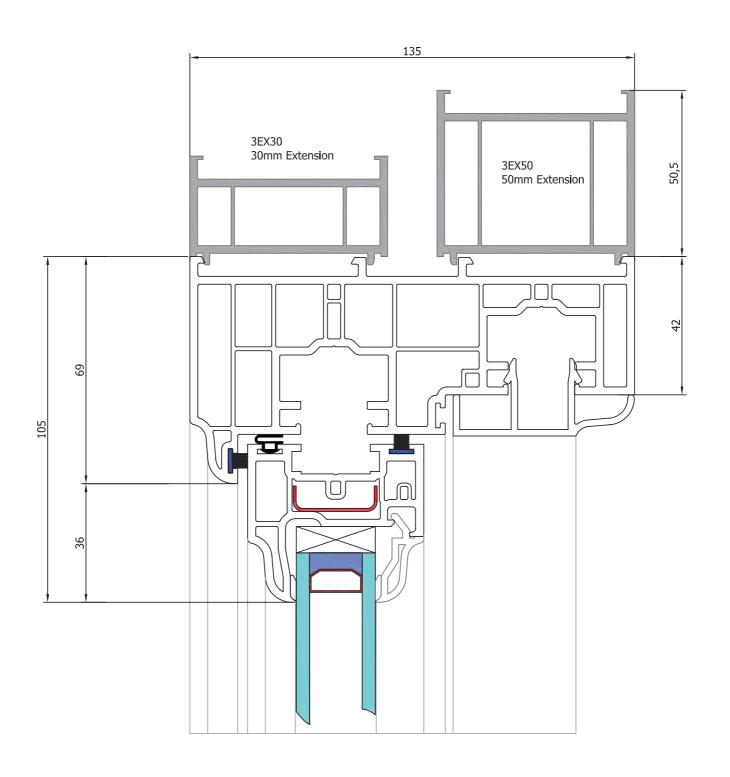

3S225 - 225mm Vertical Slider Sill

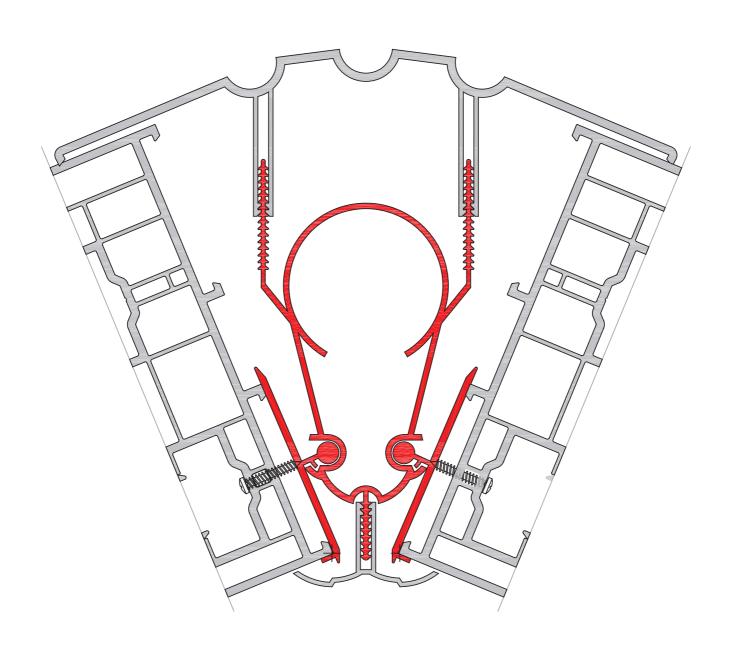


Aluminium security bar on standard cill

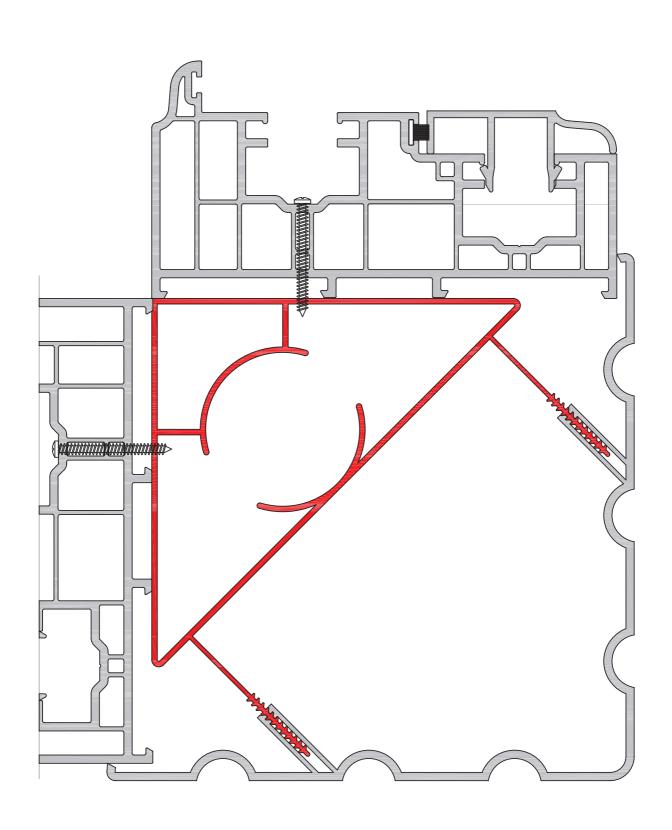


Aluminium security bar on non standard cill





30mm and 50mm Add-on



Bay Pole Deductions and Loads

Frame Deductions

Angle	Frame Deduction (Per Side or Per Touch)
90°	0mm
120°	5.2mm
125°	6.4mm
130°	7.6mm
135°	9mm
140°	10.1mm
145°	11.4mm
150°	12.6mm

Please note, These deductions are measured to the inside of the sill upstand.

Max Loads

Angle	VSLBB01	VSLBB02	VS90
600	3.26	3.26	3.5*
900	3.26	3.26	3.5*
1200	3.06	3.06	3.5*
1500	2.90	2.90	3.0*
1800	2.90	2.90	3.0*
2100	2.66	2.66	2.7*
2400	2.40	2.40	2.5*

Please note, We rounded down the I-values to include a safety factor within this calculation.

Also be aware that the interface between the Baypole Jack and the pole is the weakest link and the max load is capped at 2 tonnes.

Please note: Bay cills are not welded

Bay cills will be supplied as seperate window cills with cill horns and cill jointers.

Operation guide

Travel/child restrictors

A key is provided to operate the travel/child restrictors. Insert the key into the restrictor and turn it which will allow the restrictor to spring out.

Remove the key, carryout the above procedure with the other restrictor and store the key in a suitable location.

The bottom sash (if the cam catch(s) are in the open position) can be opened to allow ventilation, but it will not fully open.

To disengage the travel/child restrictors and allow full opening of the sash, press and hold the restrictor against the top sash and at the same time, insert and turn the key to lock.

Remove the key, carryout the above procedure with the other restrictor and store the key in a suitable location.

The restrictors will now be in the closed and locked position allowing full opening of the sash.

WARNING: The travel/child restrictors have to be manually reengaged each time the windows have been fully opened or put into the tilt mode

Tilt facility (top and bottom sashes)

The tilt facility is to allow the consumer to clean the outside pane of the sealed unit from within the property. On using the tilt facility, the window must be supported at all times until it comes to rest in the open position.

Ensure that the cam catch(s) are in the unlocked and open position. Lift the bottom sash up using the sash lifts say 10cm. On top of the sash there are two tilt knobs. Push both tilt knobs simultaneously inwards towards the middle of the window until they come to a stop and, whilst holding them, pull the sash towards you. Do not let go of the sash until it comes fully to rest and is supported in the open position by the side tilt restrictors.

To close the window, simply push the sash back towards the outer frame and the top sash. You will hear a 'click' as the spring loaded snap latches lock back into the outer frame. Once the tilt restrictors have been re-engaged, the window can be moved up or down as required.

To allow the top sash to tilt for cleaning purposes, the bottom sash must be put into the tilt mode first. Refer to the notes above.

Pull the top sash down using the ring pull(s) fitted to the sash for say 10cm.

WARNING: Failure to support the window opening could result in the restrictors being permanently damaged

Operation guide

evolvevs

Sash opening/closing

The cam catch lever(s) needs to be positioned in the open position. If locking cam catch(s) are fitted, insert the key and turn to lock or unlock. Remove the key and store in a suitable position.

The sashes must be opened and closed by using the sash lifts/ring pull(s). On no account must the sashes be opened and closed using the external Georgian bars (if fitted). The Georgian bars are a decorative feature only and it is possible that they could become loose or even fall off if used to open and close the sashes.

WARNING: If the Georgian bars are used as a means for opening and closing sashes, no warranty will be given and any remedial site visits will be chargeable

Cleaning

The windows should be cleaned using warm soapy water. On no account should abrasive or solvent based cleaners be used on the window.

